Course No: S853

S853E S853L

Orange Unified School District

EARTH SCIENCE

Year Course

GRADE LEVEL: 9

PREREQUISITES: Concurrently enrolled in Algebra.

INTRODUCTION TO THE SUBJECT:

Earth Science is an overview of earth science and insight into the means by which scientific knowledge is acquired. The course is based upon the California Content State Standards for Science with emphasis placed upon developing abilities in problem solving through experimentation and concrete examples. Students will study earth's place in the universe, dynamic earth processes, energy in the earth system, biogeochemical cycles, structure and composition of the atmosphere, California geology, and investigation and experimentation.

TEXT: Allison, Mead A., Arthur T. DeGaetano, Jay M. Pasachoff, *Earth Science*. Holt, Rinehart and Winston, 2006.

FIRST SEMESTER

ASSESSMENT BLUEPRINT

Semester	Standard		No. Items
	1c	early Earth was very different from Earth today	4
	3a	features of the ocean floor provide evidence of plate tectonics	4
	3b	principal structures that form at the three kinds of plate boundaries	4
	3c	rock properties based on the physical/chemical conditions in which formed	4
	3d	why/how earthquakes occur; scales used to measure intensity and magnitude	3
	3e	two kinds of volcanoes: violent eruptions and voluminous lava	2
_	4a	relative amount of incoming solar energy compared to Earth's internal energy	4
1	4b	incoming solar radiation in terms of reflection, absorption, and photosynthesis	4
	4c	atmospheric gases that absorb Earth's thermal radiation; greenhouse effect	4
	5d	properties of ocean water	4
	7a	carbon cycle of photosynthesis and respiration and the nitrogen cycle.	4
	7b	global carbon cycle	4
	7c	movement of matter driven by Earth's internal/external sources of energy	2
	9a	major economic resources in California and relation to California's geology	3
	9b	principal natural hazards in California regions and their geologic basis	5
	9c	California water	2
	IEh	topographic and geologic maps	2
	IEl	solve problems requiring concepts from more than one area of science	1

COURSE OVERVIEW AND APPROXIMATE UNIT TIME ALLOTMENTS:

FIRST SEMESTER

I. Fundamentals of Earth Science (review of 6th grade topics)

2 weeks

Essential Learning: Students will understand structure and composition of Earth.

	Topic	Text Location	Standards
A.	Density		
B.	Conduction, convection, radiation		
C.	Vocabulary		
D.	Basic Geography/Topographic Mapping	3.1, 3.3	I & E h
E.	Earth Basics	2.1	

II. Earth as a System

4 weeks

Essential Learning: Students will identify how energy enters the Earth's system primarily as solar radiation and either escapes as heat or moves through the spheres as stored chemical energy.

	Topic	Text Location	Standards
A.	Systems, spheres, reservoirs		
B.	Energy budget	2.2	4a, b
C.	Cycles (carbon, nitrogen, water, oxygen)		7a, b, c
D.	Greenhouse effect	22.2	4c, d

III. Rocks 3 weeks

Essential Learning: Students will explain the properties of rocks based on the physical and chemical conditions in which they are formed.

	Topic	Text Location	Standards
A.	Rocks and Rock Record/Cycle	6.1, 2, 3, 4; 8.3	1c, 3c,
B.	Relative/Absolute Age (minimal time)	8.1, 2	I&Ei
C.	Weathering and Erosion (embedded)		

End of Q1

IV. Dynamic Earth

6 weeks

Essential Learning: Students will describe how plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface.

	Topic	Text Location	Standards
A.	Plate Tectonics	10.1, 2, 3	3a, b
B.	Earthquakes	12.1, 2, 3	3d
C.	Volcanoes	13.1, 2, 3	3e
D.	California Geology (embedded)	supplement	9a, b, c

V. Oceans 2 weeks

Essential Learning: Students will know properties of ocean water and ocean currents and effects on global conditions.

	Topic	Text Location	Standards
A.	Ocean properties and circulation	20.1, 21.1	5d

VI. Investigation and Experimentation (1a-n)

Ongoing

SECOND SEMESTER

ASSESSMENT BLUEPRINT

Semester		Standard	No. Items
	1a	differences / similarities among sun, terrestrial planets, gas planets	3
	1b	solar system formed from a nebular cloud of dust and gas	2
	1d	planets much closer to Earth than the stars are	2
	1e	Sun a typical star/powered by nuclear reactions, primarily fusion of H to form He	2
	1f	effects asteroid impacts have had shaping surface of planets, etc.	2
	2a	solar system is located in outer edge of the disc-shaped Milky Way galaxy	2
	2b	galaxies are made of billions of stars; comprise most of visible mass of universe	2
	2c	all elements with an atomic <i>number</i> > that of lithium formed by nuclear fusion	2
	2d	stars differ in life cycles; visual, radio, and X-ray telescopes used to collect data	3
	5a	circulation patterns in the atmosphere and oceans that globally distribute the heat	3
	5b	relationship between rotation of Earth / ocean currents and air in pressure centers	3
	5c	origin and effects of temperature inversions	2
	5e	rain forests and deserts on Earth distributed in bands at specific latitudes	2
	6a	weather and climate involve the transfer of energy into and out of the atmosphere	2
	6b	effects on climate of latitude, elevation, topography, proximity to bodies of water	3
	6c	Earth's climate changed over time	3
	8a	thermal structure and chemical composition of the atmosphere	3
	8b	outgassing, carbon dioxide concentration, atmospheric oxygen	3
	8c	ozone layer	2
	IEb	sources of unavoidable experimental error	2
	IEf	distinguish between hypothesis and theory	2

I. Atmospheric Forces

4 weeks

Essential Learning: Students will describe conditions of the atmosphere, how the atmosphere has changed over time, and the effects on weather and climate.

	Topic	Text Location	Standards
A.	Atmosphere	22.1, 2, 3	5a, b, c, e; 8a, b, c
B.	Weather	24.1, 2	60 h o 1d
C.	Climate/Climate Change	25.1, 3	6a, b, c; 4d

II. Space 5 weeks

Essential Learning: Students will apply earth-based and space-based astronomy to reveal the structure, scale, and changes in stars, galaxies, and the universe over time.

	Topic	Text Location	Standards
A.	Earth's Movements	26.1, 2	1d, 2d
B.	Formation of the Solar System/Planets	27.1, 2, 3, 4	1a, b; 4d
C.	Meteors and Asteroids	28.4	1f
D.	Sun	21.1	1e
E.	Stars, Galaxies, and the Universe	30.1, 2, 3, 4	2a, b, c

III. CST Review 1-2 weeks

IV. Teacher Selected Topics 6-7 weeks

V. Investigation and Experimentation ongoing

DATE OF CONTENT REVISION: NEW - May 2005

DATE OF BOARD APPROVAL: June 23, 2005

CURRENT CONTENT REVISION: March 2011

CALIFORNIA CONTENT STANDARDS: EARTH SCIENCES	# of Items	%
Earth's Place in the Universe	12	20.0%
1. Astronomy and planetary exploration reveal the solar system's structure, scale, and change over time. As a basis for understanding this concept:	7	
a. Students know how the differences and similarities among the sun, the terrestrial planets, and the gas planets may have been established during the formation of the solar system.	1 or 2**	
b. Students know the evidence from Earth and moon rocks indicates that the solar system was formed from a nebular cloud of dust and gas approximately 4.6 billion years ago.	1	
c. Students know the evidence from geological studies of Earth and other planets suggest that the early Earth was very different from Earth today.	1 or 2**	
d. Students know the evidence indicating that the planets are much closer to Earth than the stars are.	1	
e. Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.	1	
f. Students know the evidence for the dramatic effects that asteroid impacts have had in shaping the surface of planets and their moons and in mass extinctions of life on Earth.	1	
g.*Students know the evidence for the existence of planets orbiting other stars.	NA*	

2. Earth-based and space-based astronomy reveal the structure, scale, and changes in stars, galaxies, and the universe over time. As a basis for understanding this concept:	5
a. Students know the solar system is located in an outer edge of the disc- shaped Milky Way galaxy, which spans 100,000 light years.	1
b. Students know galaxies are made of billions of stars and comprise most of the visible mass of the universe.	1
c. Students know the evidence indicating that all elements with an atomic number greater than that of lithium have been formed by nuclear fusion in stars.	1
d. Students know that stars differ in their life cycles and that visual, radio, and X-ray telescopes may be used to collect data that reveal those differences.	2
e.*Students know accelerators boost subatomic particles to energy levels that simulate conditions in the stars and in the early history of the universe before stars formed.	NA*
f. *Students know the evidence indicating that the color, brightness, and evolution of a star are determined by a balance between gravitational collapse and nuclear fusion.	NA*
g.*Students know how the red-shift from distant galaxies and the cosmic background radiation provide evidence for the "big bang" model that suggests that the universe has been expanding for 10 to 20 billion years.	NA*
Dynamic Earth Processes	9
	9
Dynamic Earth Processes 3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface. As the	9 1 or 2**
Dynamic Earth Processes 3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface. As the basis for understanding this concept: a. Students know features of the ocean floor (magnetic patterns, age, and	
Dynamic Earth Processes 3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface. As the basis for understanding this concept: a. Students know features of the ocean floor (magnetic patterns, age, and sea-floor topography) provide evidence of plate tectonics. b. Students know the principal structures that form at the three different	1 or 2**
Dynamic Earth Processes 3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface. As the basis for understanding this concept: a. Students know features of the ocean floor (magnetic patterns, age, and sea-floor topography) provide evidence of plate tectonics. b. Students know the principal structures that form at the three different kinds of plate boundaries. c. Students know how to explain the properties of rocks based on the physical and chemical conditions in which they formed, including plate	1 or 2** 1 or 2**
Dynamic Earth Processes 3. Plate tectonics operating over geologic time has changed the patterns of land, sea, and mountains on Earth's surface. As the basis for understanding this concept: a. Students know features of the ocean floor (magnetic patterns, age, and sea-floor topography) provide evidence of plate tectonics. b. Students know the principal structures that form at the three different kinds of plate boundaries. c. Students know how to explain the properties of rocks based on the physical and chemical conditions in which they formed, including plate tectonic processes. d. Students know why and how earthquakes occur and the scales used to	1 or 2** 1 or 2** 2 or 3**

Energy in the Earth System	18	30.0%
4. Energy enters the Earth system primarily as solar radiation and eventually escapes as heat. As a basis for understanding this concept:	5	
a. Students know the relative amount of incoming solar energy compared with Earth's internal energy and the energy used by society.	1 or 2**	
b. Students know the fate of incoming solar radiation in terms of reflection, absorption, and photosynthesis.	1 or 2**	
c. Students know the different atmospheric gases that absorb the Earth's thermal radiation and the mechanism and significance of the greenhouse effect.	1 or 2**	
d.* Students know the differing greenhouse conditions on Earth, Mars, and Venus; the origins of those conditions; and the climatic consequences of each.	NA*	
5. Heating of Earth's surface and atmosphere by the sun drives convection within the atmosphere and oceans, producing winds and ocean currents. As a basis for understanding this concept:	8	
a. Students know how differential heating of Earth results in circulation patterns in the atmosphere and oceans that globally distribute the heat.	2	
b. Students know the relationship between the rotation of Earth and the circular motions of ocean currents and air in pressure centers.	1 or 2**	
c. Students know the origin and effects of temperature inversions.	1	
d. Students know properties of ocean water, such as temperature and salinity, can be used to explain the layered structure of the oceans, the generation of horizontal and vertical ocean currents, and the geographic distribution of marine organisms.	2 or 3**	
e. Students know rain forests and deserts on Earth are distributed in bands at specific latitudes.	1	
f.* Students know the interaction of wind patterns, ocean currents, and mountain ranges results in the global pattern of latitudinal bands of rain forests and deserts.	NA*	
g.* Students know features of the ENSO (El Niño southern oscillation) cycle in terms of sea-surface and air temperature variations across the Pacific and some climatic results of this cycle.	NA*	
6. Climate is the long-term average of a region's weather and depends on many factors. As a basis for understanding this concept:	5	
a. Students know weather (in the short run) and climate (in the long run) involve the transfer of energy into and out of the atmosphere.	1	
b. Students know the effects on climate of latitude, elevation, topography, and proximity to large bodies of water and cold or warm ocean currents.	2	
c. Students know how Earth's climate has changed over time, corresponding to changes in Earth's geography, atmospheric composition, and other factors, such as solar radiation and plate movement.	2	
d.* Students know how computer models are used to predict the effects of the increase in greenhouse gases on climate for the planet as a whole and for specific regions.	NA*	

Biogeochemical Cycles	5	8.3%
7. Each element on Earth moves among reservoirs, which exist in the		
solid earth, in oceans, in the atmosphere, and within and among		
organisms as part of biogeochemical cycles. As a basis for understanding this concept:		
a. Students know the carbon cycle of photosynthesis and respiration and the		
nitrogen cycle.	2	
b. Students know the global carbon cycle: the different physical and		
chemical forms of carbon in the atmosphere, oceans, biomass, fossil	2	
fuels, and the movement of carbon among these reservoirs.		
c. Students know the movement of matter among reservoirs is driven by	1	
Earth's internal and external sources of energy.	•	
d.*Students know the relative residence times and flow characteristics of	NA*	
carbon in and out of its different reservoirs.		
Structure and Composition of the Atmosphere	5	8.3%
8. Life has changed Earth's atmosphere, and changes in the		
atmosphere affect conditions for life. As a basis for understanding		
this concept:		
a. Students know the thermal structure and chemical composition of the	2	
atmosphere.		
b. Students know how the composition of Earth's atmosphere has evolved	2	
over geologic time and know the effect of outgassing, the variations of carbon dioxide concentration, and the origin of atmospheric oxygen.	2	
c. Students know the location of the ozone layer in the upper atmosphere,		
its role in absorbing ultraviolet radiation, and the way in which this layer	1	
varies both naturally and in response to human activities.	1	
California Geology	5	8.3%
9. The geology of California underlies the state's wealth of natural		01070
resources as well as its natural hazards. As a basis for		
understanding this concept:		
a. Students know the resources of major economic importance in California	4 0" 0**	
and their relation to California's geology.	1 or 2**	
b. Students know the principal natural hazards in different California regions	2 or 2**	
and the geologic basis of those hazards.	2 or 3**	
c. Students know the importance of water to society, the origins of	1	
California's fresh water, and the relationship between supply and need.	I	
d.*Students know how to analyze published geologic hazard maps of		
California and know how to use the map's information to identify evidence	NA*	
of geologic events of the past and predict geologic changes in the future.		

Investigation and Experimentation	6	10.0%
1. Scientific progress is made by asking meaningful questions and		
conducting careful investigations. As a basis for understanding this		
concept and addressing the content in the other four strands,		
students should develop their own questions and perform		
investigations. Students will:		
a. Select and use appropriate tools and technology (such as computer-		
linked probes, spreadsheets, and graphing calculators) to perform tests,		
collect data, analyze relationships, and display data.		
b. Identify and communicate sources of unavoidable experimental error.		
c. Identify possible reasons for inconsistent results, such as sources of error		
or uncontrolled conditions.		
d. Formulate explanations by using logic and evidence.		
e. Solve scientific problems by using quadratic equations and simple		
trigonometric, exponential, and logarithmic functions.		
f. Distinguish between hypothesis and theory as scientific terms.		
g. Recognize the usefulness and limitations of models and theories as		
scientific representations of reality.		
h. Read and interpret topographic and geologic maps.		
i. Analyze the locations, sequences, or time intervals that are characteristic		
of natural phenomena (e.g., relative ages of rocks, locations of planets		
over time, and succession of species in an ecosystem).		
j. Recognize the issues of statistical variability and the need for controlled		
tests.		
k. Recognize the cumulative nature of scientific evidence.		
I. Analyze situations and solve problems that require combining and		
applying concepts from more than one area of science.		
m. Investigate a science-based societal issue by researching the literature,		
analyzing data, and communicating the findings. Examples of issues		
include irradiation of food, cloning of animals by somatic cell nuclear		
transfer, choice of energy sources, and land and water use decisions in		
California.		
n. Know that when an observation does not agree with an accepted		
scientific theory, the observation is sometimes mistaken or fraudulent		
(e.g., the Piltdown Man fossil or unidentified flying objects) and that the		
theory is sometimes wrong (e.g., the Ptolemaic model of the movement of		
the Sun, Moon, and planets).		
TOTAL	60	100%