Orange Unified School District BIOLOGY Year Course

GRADE LEVEL: 10-12

PREREQUISITES: *B* or better grade in middle school science or *C* or better grade in previous high school science course. Recommended reading level at 10^{th} grade or above. Completion of Algebra I with a grade of *C* or better.

INTRODUCTION TO THE SUBJECT:

Biology is a college preparatory course which meets part of the University of California laboratory science entrance requirement. Emphasis is on the investigative nature of the biological sciences. Through laboratory experiences, students are led to observe, experiment, form hypothesis, collect and verify data, and apply basic research methods. Skill in the use of laboratory materials is developed.

The course of study has the student explore the basic concepts of: measurement, microscope use, scientific method and problem solving, chemistry as applied to biology, cell structure, cell physiology, energetics (photosynthesis and respiration), nucleic acids (DNA/RNA), protein synthesis, genetics, gamete reproduction, evolutionary theory, microbiology, ecological relationships, ecological and environmental issues and problems, populations, and human anatomy and physiology.

TEXT: Miller, Kenneth R. and Joseph S. Levine. Biology. Prentice Hall, 2007.

FIRST SEMESTER

Semester		Standard	No. Items
	1a	Semipermeable membranes	2
	1b	Enzymes are proteins that catalyze and can be denatured by temp, ionic conditions, pH	3
	1c	Prokaryotic/eukaryotic cells v. viruses	3
	1e	Role of endoplasmic reticulum and Golgi in secretion of proteins	2
	1f	Photosynthesis	2
	1g	Cellular respiration	3
	1h	Macromolecules	2
	6a	Biodiversity	2
	6b	Changes in ecosystems	2
	6c	Fluctuations in population	2
	6d	Water, carbon, nitrogen cycles	1
	6e	Producers and decomposers	2
	6f	Energy pyramid	2
	9a	Circulatory and respiratory systems	3
	9b	Nervous system	3
	9c	Feedback loops including nervous and endocrine	2
	9d	Role of neurons	2
	9e	Types of neurons	2
	10a	Role of skin	2
	10b	Antibodies	2
	10c	Vaccinations	2
	10d	Primary defense against pathogens	2
	10e	Comprised immune system	2

ASSESSMENT BLUEPRINT

COURSE OVERVIEW AND APPROXIMATE UNIT TIME ALLOTMENTS:

<u>WEEKS</u>

I. Introduction to Biology

Essential Learning: Students will apply the scientific method to problem solving and laboratory exercises.

	Торіс	Text	Standards
A.	Scientific method		I&E 1a, d, f, g, j, l, m
В.	Problem solving	Chantar 1	I&E 1b, c, e, l, m, n
C.	Lab safety	Chapter 1	
D.	Characteristics of living things		

II. Ecology

Essential Learning: Students will know an ecosystem is a balance between competing effects.

	Торіс	Text	Standards
A.	Principles of ecology	3-1	
В.	Atoms, cycles, and energy flow	3-2, 3-3	6d, 6e, 6f
C.	Biodiversity and habitats	4-2, 4-3 or 4-4	ба
D.	Population biology	5	бb, 6с
E.	Conservation biology and human impact	6-2, 6-3	бb

III. Cell Biology – Part 1

Essential Learning: Students will know the structure and function of fundamental life processes of plants and animals.

	Торіс	Text	Standards
A.	Macromolecule structure/function	2-3, 2-4	1b, 1h
В.	Cell structure and function	7-2	1e
C.	Cellular transport and cell membrane	7-3	1a
D.	Comparing plant and animal cells	7-2	1c

IV. Cell Biology – Part 2

Essential Learning: Students will know the structure and function of fundamental life processes of plants and animals.

	Торіс	Text	Standards
A.	Role of ATP	8-1	1f, 1g
В.	Photosynthesis	8-2, 8-3	1f
C.	Respiration	9-1, 9-2	1g

V. Physiology

Essential Learning: Students will know the coordinated structures and functions of organ systems in maintaining homeostasis.

	Торіс	Text	Standards
A.	Nervous/Endocrine systems	35-2, 35-3, 39-1	9b, 9c, 9d, 9e
B.	Circulatory/Respiratory systems	37-1, 37-3	9a
C.	Immunity	40-2	10a, 10b, 10c, 10e
D.	Prokaryotic/Virus structure and replication	19-1, 19-2	1c, 10d

4

2

4

3

4

SECOND SEMESTER

ASSESSMENT BLUEPRINT

Semester	Standard	No. Items
	1d Protein synthesis	3
	1h Macromolecules	1
	2a Meiosis in sexual reproduction	2
	2b Only certain cells undergo meiosis	2
	2c Random chromosome segregation	2
	2d Combinations of alleles	2
	2e Half of DNA from each parent	2
	2f Role of chromosomes in determining gender	2
	2g Predict combinations of alleles (Punnett squares)	2
	3a Mode of inheritance	2
	3b Mendel's laws	2
	4a Translation	2
	4b Coding rules	2
	4c Effect of DNA mutations	2
	4d Gene expression	2
	4e Proteins can differ in number and sequence of amino acids	2
	5a Structures and functions of DNA, RNA, and protein	2
	5b Base-pairing rules	2
	5c Genetic engineering	2
	7a Natural selection acts on phenotypes	2
	7b Lethal alleles	1
	7c Mutations	1
	7d Genetic variation equals stability within populations	1
	8a Natural selection	2
	8b Great diversity of species increases chance of organisms survive environmental changes	2
	8c Genetic drift	1
	8d Isolation affects speciation	1
	8e Analysis of fossil evidence	1

I. Applied Genetics

Essential Learning: Students will know the structure and function of nucleic acid sequences and how they influence characteristics of organisms.

	Торіс	Text	Standards
A.	DNA and genes	12-1, 12-2, 12-4	1h, 4c, 4d, 5a, 5b
В.	Protein synthesis and RNA	12-3	1d, 4a, 4b, 4e
C.	Genetic engineering	13-4	5c

II. Heredity

Essential Learning: Students will know that sexual reproduction leads to genetic variation in a population.

	Торіс	Text	Standards
Α.	Meiosis	11-4, 12-2	2a. 2b, 2d, 2e
В.	Mendel's Laws of Heredity and Punnett squares	11-1, 11-2	2c, 2e, 2g. 3b
C.	Patterns of inheritance	11-3	2g, 3a
D.	Human heredity	14-1	2f

3

3

III. Evolution

Essential Learning: Students will know that evolution is the result of genetic changes that occur in constantly changing environments.

	Торіс	Text	Standards
A.	Natural selection	15-3, 16-1, 16-2	7a, 7b, 8a
В.	Speciation and isolations	16-3	7c, 7d, 8b, 8c, 8d
C.	Evidence/Patterns of evolution	17-1, 17-4	7c, 8e

IV. CST Review

- V. Topics and Projects at Teacher Discretion Options might include
 - Primitive Kingdom
 - Plant Kingdom
 - Animal Kingdom
 - Basic Chemistry/lab practice

DATE OF LAST CONTENT REVISION:

DATE OF BOARD APPROVAL:

DATE OF CURRENT REVIEW:

CALIFORNIA CONTENT STANDARDS: BIOLOGY/LIFE SCIENCES	# of Items	%
Cell Biology	9	15.0%
 The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism's cells. As a basis for understanding this concept: 		
 Students know cells are enclosed within semipermeable membranes that regulate their interaction with their surroundings. 	1	
b. Students know enzymes are proteins that catalyze biochemical reactions without altering the reaction equilibrium and the activities of enzymes depend on the temperature, ionic conditions, and the pH of the surroundings.	1 or 2**	
 Students know how prokaryotic cells, eukaryotic cells (including those from plants and animals), and viruses differ in complexity and general structure. 	1 or 2**	
d. Students know the central dogma of molecular biology outlines the flow of information from transcription of ribonucleic acid (RNA) in the nucleus to translation of proteins on ribosomes in the cytoplasm.	1	
e. Students know the role of the endoplasmic reticulum and Golgi apparatus in the secretion of proteins.	1	
f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.	1	
g. Students know the role of the mitochondria in making stored chemical-bond energy available to cells by completing the breakdown of glucose to carbon dioxide.	1	
h. Students know most macromolecules (polysaccharides, nucleic acids, proteins, lipids) in cells and organisms are synthesized from a small collection of simple precursors.	1	
i.* Students know how chemiosmotic gradients in the mitochondria and chloroplast store energy for ATP production.	NA*	
j.* Students know how eukaryotic cells are given shape and internal organization by a cytoskeleton or cell wall or both.	NA*	

3

1

8

Biological career pathways •

- **Building Green Houses**
- Comparative Anatomy—Dissections

• Biology around a current event

October 19, 2000

March 2011

June 2007

Genetics	19	31.6%
2. Mutation and sexual reproduction lead to genetic variation in a population. As a basis for understanding this concept:	7	
a. <i>Students know</i> meiosis is an early step in sexual reproduction in which the pairs of chromosomes separate and segregate randomly during cell division to produce gametes containing one chromosome of each type.	1	
b. Students know only certain cells in a multicellular organism undergo meiosis.	1	
c. <i>Students know</i> how random chromosome segregation explains the probability that a particular allele will be in a gamete.	1	
d. <i>Students know</i> new combinations of alleles may be generated in a zygote through the fusion of male and female gametes (fertilization).	1	
e. <i>Students know</i> why approximately half of an individual's DNA sequence comes from each parent.	1	
f. Students know the role of chromosomes in determining an individual's sex.	1	
g. <i>Students know</i> how to predict possible combinations of alleles in a zygote from the genetic makeup of the parents.	1	
3. A multicellular organism develops from a single zygote, and its phenotype depends on its genotype, which is established at fertilization. As a basis for understanding this concept:	3	
a. <i>Students know</i> how to predict the probable outcome of phenotypes in a genetic cross from the genotypes of the parents and mode of inheritance (autosomal or X-linked, dominant or recessive).	1 or 2**	
b. Students know the genetic basis for Mendel's laws of segregation and independent assortment.	1 or 2**	
c.*Students know how to predict the probable mode of inheritance from a pedigree diagram showing phenotypes.	NA*	
d.* Students know how to use data on frequency of recombination at meiosis to estimate genetic distances between loci and to interpret genetic maps of chromosomes.	NA*	
4. Genes are a set of instructions encoded in the DNA sequence of each organism that specify the sequence of amino acids in proteins characteristic of that organism. As a basis for understanding this concept:	5	
a. <i>Students know</i> the general pathway by which ribosomes synthesize proteins, using tRNAs to translate genetic information in mRNA.	1	
b. <i>Students know</i> how to apply the genetic coding rules to predict the sequence of amino acids from a sequence of codons in RNA.	1	
c. <i>Students know</i> how mutations in the DNA sequence of a gene may or may not affect the expression of the gene or the sequence of amino acids in an encoded protein.	1	
d. <i>Students know</i> specialization of cells in multicellular organisms is usually due to different patterns of gene expression rather than to differences of the genes themselves.	1	
e. Students know proteins can differ from one another in the number and sequence of amino acids.	1	
f.* Students know why proteins having different amino acid sequences typically have different shapes and chemical properties.	NA*	
5. The genetic composition of cells can be altered by incorporation of exogenous DNA into the cells. As a basis for understanding this concept:	4	
a. Students know the general structures and functions of DNA, RNA, and protein.	1 or 2**	
b. <i>Students know</i> how to apply base-pairing rules to explain precise copying of DNA during semiconservative replication and transcription of information from DNA into mRNA.	1 or 2**	
c. <i>Students know</i> how genetic engineering (biotechnology) is used to produce novel biomedical and agricultural products.	1 or 2**	
d.*Students know how basic DNA technology (restriction digestion by endonucleases, gel electrophoresis, ligation, and transformation) is used to construct recombinant DNA molecules.	NA*	

genetic makeup and support expression of new protein products.	NA*	
Ecology	7	11.7%
6. Stability in an ecosystem is a balance between competing effects. As a basis for		
understanding this concept:		
a. Students know biodiversity is the sum total of different kinds of organisms and is affected	1	
by alterations of habitats.	1	_
b. Students know how to analyze changes in an ecosystem resulting from changes in	1	
climate, human activity, introduction of nonnative species, or changes in population size.	•	-
c. Students know how fluctuations in population size in an ecosystem are determined by the	1 or 2**	
relative rates of birth, immigration, emigration, and death.	-	-
d. Students know how water, carbon, and nitrogen cycle between abiotic resources and	4 0**	
organic matter in the ecosystem and how oxygen cycles through photosynthesis and	1 or 2**	
respiration. e. <i>Students know</i> a vital part of an ecosystem is the stability of its producers and		-
	1	
decomposers. f. <i>Students know</i> at each link in a food web some energy is stored in newly made structures		-
but much energy is dissipated into the environment as heat. This dissipation may be	1	
represented in an energy pyramid.	'	
g.*Students know how to distinguish between the accommodation of an individual organism		
to its environment and the gradual adaptation of a lineage of organisms through genetic	NA*	
change.		
Evolution	9	15.0%
7. The frequency of an allele in a gene pool of a population depends on many factors	<u> </u>	
and may be stable or unstable over time. As a basis for understanding this	4	
concept:	-	
a. Students know why natural selection acts on the phenotype rather than the genotype of an		1
organism.	1	
b. Students know why alleles that are lethal in a homozygous individual may be carried in a		
heterozygote and thus maintained in a gene pool.	1	
c. Students know new mutations are constantly being generated in a gene pool.	1	
d. Students know variation within a species increases the likelihood that at least some		1
members of a species will survive under changed environmental conditions.	1	
e.* Students know the conditions for Hardy-Weinberg equilibrium in a population and why	N1.4.*	
these conditions are not likely to appear in nature.	NA*	
f.* Students know how to solve the Hardy-Weinberg equation to predict the frequency of	NA*	
	INA	
genotypes in a population, given the frequency of phenotypes.		
	F	
genotypes in a population, given the frequency of phenotypes.	5	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: 		-
genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing	5 1	-
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of 	1	-
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. 		-
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some 	1	-
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know reproductive or geographic isolation affects speciation. 	1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know how to analyze fossil evidence with regard to biological diversity, episodic 	1 1 1 1 1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. 	1 1 1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know reproductive or geographic isolation affects speciation. e. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. f.* Students know how to use comparative embryology, DNA or protein sequence 	1 1 1 1 1 1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. f.* Students know how to use comparative embryology, DNA or protein sequence comparisons, and other independent sources of data to create a branching diagram 	1 1 1 1 1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know reproductive or geographic isolation affects speciation. e. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. f.* Students know how to use comparative embryology, DNA or protein sequence comparisons, and other independent sources of data to create a branching diagram (cladogram) that shows probable evolutionary relationships. 	1 1 1 1 1 NA*	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know neproductive or geographic isolation affects speciation. e. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. f.* Students know how to use comparative embryology, DNA or protein sequence comparisons, and other independent sources of data to create a branching diagram (cladogram) that shows probable evolutionary relationships. g.* Students know how several independent molecular clocks, calibrated against each other 	1 1 1 1 1 1	
 genotypes in a population, given the frequency of phenotypes. 8. Evolution is the result of genetic changes that occur in constantly changing environments. As a basis for understanding this concept: a. Students know how natural selection determines the differential survival of groups of organisms. b. Students know a great diversity of species increases the chance that at least some organisms survive major changes in the environment. c. Students know the effects of genetic drift on the diversity of organisms in a population. d. Students know reproductive or geographic isolation affects speciation. e. Students know how to analyze fossil evidence with regard to biological diversity, episodic speciation, and mass extinction. f.* Students know how to use comparative embryology, DNA or protein sequence comparisons, and other independent sources of data to create a branching diagram (cladogram) that shows probable evolutionary relationships. 	1 1 1 1 1 NA*	

10

9. As a result of the coordinated structures and functions of organ systems, the internal environment of the human body remains relatively stable (homeostatic) despite changes in the outside environment. As a basis for understanding this concept: 6 a. Students know how the complementary activity of major body systems provides cells with oxygen and nutrients and removes toxic waste products such as carbon dioxide. 2/3*** b. Students know how the complementary activity of major body systems provides cells with oxygen and nutrients and removes toxic waste products such as carbon dioxide. 1/3*** c. Students know how the echack loops in the nervous and endocrine systems regulate conditions in the body. 1 c. Students know the functions of the nervous system and the role of neurons in transmitting electrochemical impulses. 1/3**** e. Students know the individual functions and sites of secretion of digestive enzymes in the individual functions and sites of secretion of digestive enzymes. NA* e. Students know the cellular and molecular basis of muscle contraction, including the roles in the obdy edition and gluces balance. NA* e. Students know the role of the likin in providing inspecific defenses against infection. 1 e. Students know the role of the likin in providing nonspecific defenses against infection. 1 e. Students know the role of the likin in providing nonspecific defenses against infection. 1 1. Students know the role of the likin in the divid spremary defenses against infection. 1 <th></th> <th></th> <th></th>			
a. Students know how the complementary activity of major body systems provides cells with 2/3*** 2/3*** b. Students know how the nervous system mediates communication between different parts of the body and the bodys interactions with the environment. 1/3*** c. Students know how the reducat loops in the nervous and endocrine systems regulate conditions in the body. 1 c. Students know the viceback loops in the nervous and endocrine systems regulate conditions in the body. 1 c. Students know the release of sensory neurons, interneurons, and motor neurons in transmitting electrochemical impulses. 1/3*** c. Students know the neoscitatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* g. Students know the nonescitatic role of the kidneys in the removal of nitrogenous wastes of actin, myosin, Ca+2, and ATP. NA* 11. Students know the ornoestatic role of the kidneys in the cellular level and in whole norganisms. NA* g. Students know the role of antibodies in the body's response to infection. 1 11. Students know the role of antibodies in the body's response to micetion. 1 12. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against infection. 1 13. Students know therole of shalbodies in the body's primary defenses against infect	despite changes in the outside environment. As a basis for understanding this	6	
of the body and the body's interactions with the environment. 113 c. Students know the functions of the nervous and endocrine systems regulate 1 d. Students know the functions of the nervous system and the role of neurons in transmitting electrochemical impulses. 1 e. Students know the roles of sensory neurons, interneurons, and motor neurons in sensation, thought, and response. 1/3*** e. Students know the roles of sensory neurons, interneurons, and motor neurons in sensation, thought, and response. NA* g.*Students know the homeostatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* g.*Students know the cellular and molecular basis of muscle contraction, including the roles of actin, myosin, Ca+2, and ATP. NA* 1.* Students know the role of the skin in providing nonspecific defenses against infection. 1 or 2 erganisms. 1 or 2 (every 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 1 or 2 c. Students know the role of the kinn a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections specific defenses and the response. 1 1 or 2 c. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune ystem. 1 2 b. Students know the roles of phagocytes, B-lymphoc	a. <i>Students know</i> how the complementary activity of major body systems provides cells with oxygen and nutrients and removes toxic waste products such as carbon dioxide.	2/3***	
conditions in the body. 1 d. Students know the functions of the nervous system and the role of neurons in transmitting electrochemical impulses. 1 e. Students know the roles of sensory neurons, interneurons, and motor neurons in sensation, thought, and response. 11/3*** 1.* Students know the individual functions and sites of secretion of digestive enzymes (amylases, proteases, nucleases, lipases), stomach cald, and bile salts. NA* g.* Students know the homeostatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* h.* Students know the commones (including digestive, reproductive, osmoregulatory) provide organisms. NA* 1. Students know the role of mechanisms to combat disease. As a basis for understanding the human immune response: 4 1. Organisms have a variety of mechanisms to combat diseases. 1 or 2 (every 3 yrs) 1. Students know the role of antibodies in the body's response to infection. 1 or 2 (every 3 yrs) 1. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacteria and viru infections, and effective treatments of these infections. 1 or 2 (every 3 yrs) 1. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system (Tor example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (of the body and the body's interactions with the environment.	1/3***	
electrochemical impulses. 1 6. Students know the individual functions and sites of secretion of digestive enzymes (amylases, proteases, nucleases, lipases), stomach acid, and bile salts. NA* 8. Students know the individual functions and sites of secretion of digestive enzymes (amylases, proteases, nucleases, lipases), stomach acid, and bile salts. NA* 9. Students know the homeostatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* h. Students know the cellular and molecular basis of muscle contraction, including the roles of actin, myosin, Ca+2, and ATP. NA* 1. Students know the cellular and molecular basis of combat disease. As a basis for understanding the human immune response: NA* 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 1 or 2 (every 3 yrs) d. Students know the role of antibodies in the body's primary defenses against infection. 1 c. Students know there role of antibodies in the body's primary defenses against infection. 1 d. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 e. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system (for example, a person with AIDS) made by asking meaningful questions and oenducting careful investigations. Students will:	conditions in the body.	1	
sensation, thought, and response. 17.3 1.* Students know the individual functions and sites of secretion of digestive enzymes (amylases, proteases, nucleases, lipases), stomach acid, and bile saits. NA* g.*Students know the homeostatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* h.*Students know the cellular and molecular basis of muscle contraction, including the roles of actin, myosin, Ca+2, and ATP. NA* i.*Students know the cellular and molecular basis of muscle contraction, including the roles organisms. Ca+2, and ATP. NA* 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 4 a. Students know the role of antibodies in the body's response to infection. 1 or 2 (every 3 yrs) b. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 or 2 (every 3 yrs) c. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. 1 or 2 (every 3 yrs) th.* Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Sudents will: 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting car	electrochemical impulses.	1	
(anylases, proteases, nucleases, lipases), stomach acid, and bile salts. INA g.* Students know the homeostatic role of the kidneys in the removal of nitrogenous wastes and the role of the liver in blood detoxification and glucose balance. NA* h.*Students know the cellular and molecular basis of muscle contraction, including the roles of actin, myosin, Cat-2, and ATP. NA* 1.*Students know how hormones (including digestive, reproductive, osmoregulatory) provide internal feedback mechanisms for homeostasis at the cellular level and in whole organisms. NA* 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 1 or 2 (wewy 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 or 2 (wewy 3 yrs) c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against hacteria and virul hactoria. 1 or 2 (wewy 3 yrs) c. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usally benign. 1 or 2 (wewy 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% It westigations. As a basis for understanding this concept and addressing the content in the other four	sensation, thought, and response.	1/3***	
and the role of the liver in blood detoxification and glucose balance. NA* h.* Students know the cellular and molecular basis of muscle contraction, including the roles of actin, myosin, Ca+2, and ATP. NA* i.* Students know how hormones (including digestive, reproductive, osmoregulatory) provide internal feedback mechanisms for homeostasis at the cellular level and in whole organisms. NA* 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 1 or 2 (every 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 or 2 (every 3 yrs) c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 or 2 (every 3 yrs) c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 or 2 (every 3 yrs) c. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% Its calents know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Its calents know the roles of phagocytes, B-lymphocytes, and C-notucing careful inves	(amylases, proteases, nucleases, lipases), stomach acid, and bile salts.	NA*	
of actin, myosin, Ca+2, and ATP. NA 1.* Students know how hormones (including digestive, reproductive, osmoregulatory) provide internal feedback mechanisms for homeostasis at the cellular level and in whole organisms. NA* 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 4 a. Students know the role of the skin in providing nonspecific defenses against infection. 1 or 2 (every 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 e. Students know there oles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually beingn. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. Students whoil develop their own questions and perform investigations. Students while acompating all calculators) to perform tests, collect data, analyze relationships, and display data. 6 10.0% 1. Scientific progre	and the role of the liver in blood detoxification and glucose balance.	NA*	
internal feedback mechanisms for homeostasis at the cellular level and in whole NA* organisms. 10. Organisms have a variety of mechanisms to combat disease. As a basis for understanding the human immune response: 1 a. Students know the role of the skin in providing nonspecific defenses against infection. 1 or 2 (every 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 or 2 (every 3 yrs) c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 or 2 (every 3 yrs) e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually beign. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students whould develop their own questions and perform investigations. Students will: 6 10.0% a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and display data. 1 1	of actin, myosin, Ca+2, and ATP.	NA*	
understanding the human immune response: 4 a. Students know the role of the skin in providing nonspecific defenses against infection. 1 or 2 (every 3 yrs) b. Students know the role of antibodies in the body's response to infection. 1 c. Students know the role of antibodies in the body's response to infection. 1 c. Students know the role of antibodies in the body's response to infection. 1 c. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against 1 e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (every 3 yrs) f. Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. Students should develop their own questions and perform investigations. Students will: 1 a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. 1 b. Identify and communicate sources of unavoidable experimental error. 1 c. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. 1 </td <td>internal feedback mechanisms for homeostasis at the cellular level and in whole</td> <td>NA*</td> <td></td>	internal feedback mechanisms for homeostasis at the cellular level and in whole	NA*	
b. Students know the role of antibodies in the body's response to infection. 1 c. Students know how vaccination protects an individual from infectious diseases. 1 or 2 (every 3 yrs) d. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: 6 10.0% a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. 1 1 b. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. 6 10.0% d. Formulate explanations by using logic and evidence. 9 9 1 1 g. Recognize the usefulness and limitations of models and theories as scientific representations of reality. 10 <t< td=""><td></td><td>4</td><td></td></t<>		4	
c. Students know how vaccination protects an individual from infectious diseases. 1 or 2 (every 3 yrs) d. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: 6 10.0% a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data.		(every 3 yrs)	
d. Students know there are important differences between bacteria and viruses with respect to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections. 1 e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: 8. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. 9. b. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. 1 c. After problems by using logic and evidence. 1 e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions. 1 g. Recognize the usefulness and limitations of models and theories as scientific representations of reality. 1	b. Students know the role of antibodies in the body's response to infection.	1	
to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections.1e. Students know why an individual with a compromised immune system (for example, a person with AIDS) may be unable to fight off and survive infections by microorganisms1 or 2 (every 3 yrs)f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system.NA*Investigation and Experimentation610.0%1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will:1a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data.1b. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions.1d. Formulate explanations by using logic and evidence.1e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions.1f. Distinguish between hypothesis and theory as scientific terms.2g. Recognize the usefulness and limitations of models and theories as scientific representations of reality.1			
person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign. 1 or 2 (every 3 yrs) f.* Students know the roles of phagocytes, B-lymphocytes, and T-lymphocytes in the immune system. NA* Investigation and Experimentation 6 10.0% 1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: 6 10.0% a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. b. Identify and communicate sources of unavoidable experimental error. c. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. d. Formulate explanations by using logic and evidence. e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions. g. Recognize the usefulness and limitations of models and theories as scientific representations of reality.	to their requirements for growth and replication, the body's primary defenses against bacterial and viral infections, and effective treatments of these infections.	1	
system.INAInvestigation and Experimentation610.0%1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will:INAa. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data.INAb. Identify and communicate sources of unavoidable experimental error.INAc. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions.INAd. Formulate explanations by using logic and evidence.INAe. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions.INAf. Distinguish between hypothesis and theory as scientific terms.INAg. Recognize the usefulness and limitations of models and theories as scientific representations of reality.INA	person with AIDS) may be unable to fight off and survive infections by microorganisms that are usually benign.		
1. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. b. Identify and communicate sources of unavoidable experimental error. c. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. d. Formulate explanations by using logic and evidence. e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions. f. Distinguish between hypothesis and theory as scientific terms. g. Recognize the usefulness and limitations of models and theories as scientific representations of reality.		NA*	
investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will: a. Select and use appropriate tools and technology (such as computer-linked probes, spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data. b. Identify and communicate sources of unavoidable experimental error. c. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. d. Formulate explanations by using logic and evidence. e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions. f. Distinguish between hypothesis and theory as scientific terms. g. Recognize the usefulness and limitations of models and theories as scientific representations of reality.	Investigation and Experimentation	6	10.0%
spreadsheets, and graphing calculators) to perform tests, collect data, analyze	investigations. As a basis for understanding this concept and addressing the content in the other four strands, students should develop their own questions and perform investigations. Students will:		
c. Identify possible reasons for inconsistent results, such as sources of error or uncontrolled conditions. Image: Condition of the second	spreadsheets, and graphing calculators) to perform tests, collect data, analyze relationships, and display data.		
conditions.			
e. Solve scientific problems by using quadratic equations and simple trigonometric, exponential, and logarithmic functions.	conditions.		
exponential, and logarithmic functions.			
g. Recognize the usefulness and limitations of models and theories as scientific representations of reality.	exponential, and logarithmic functions.		
representations of reality.			
h. Read and interpret topographic and geologic maps.	g. Recognize the usefulness and limitations of models and theories as scientific		
	h. Read and interpret topographic and geologic maps.		

i. Analyze the locations, sequences, or time intervals that are characteristic of natural phenomena (e.g., relative ages of rocks, locations of planets over time, and succession of species in an ecosystem).		
j. Recognize the issues of statistical variability and the need for controlled tests.		
k. Recognize the cumulative nature of scientific evidence.		
I. Analyze situations and solve problems that require combining and applying concepts from more than one area of science.		
m. Investigate a science-based societal issue by researching the literature, analyzing data, and communicating the findings. Examples of issues include irradiation of food, cloning of animals by somatic cell nuclear transfer, choice of energy sources, and land and water use decisions in California.		
n. Know that when an observation does not agree with an accepted scientific theory, the observation is sometimes mistaken or fraudulent (e.g., the Piltdown Man fossil or unidentified flying objects) and that the theory is sometimes wrong (e.g., Ptolemaic model of the movement of the Sun, Moon, and planets).		
TOTAL	60	100%